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Introduction

In this paper, we are concerned with the well-posedness of the following
stochastic reaction diffusion equation(SRDE):

du(t, x) = %Au(t, x)dt + b(u(t, x)) dt
+ o(u(t, x)) W(dt,dx), t >0, xR,
u(0,x) = up(x), xe€R. (2.1)

@ b,0: R — R deterministic measurable functions.
e drift b is locally Log-Lipschitz and |b(z)| = O(|z| log |z]).

@ W space-time white noise on R} x R defined on some filtrated
probability space (2, F, {F¢} >0, P).
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Introduction

@ Numerous work in the literature on stochastic reaction-diffusion
equations driven by space-time white noise. The majority of the work
are focused on stochastic reaction-diffusion equations defined on finite
intervals instead of the whole real line R, partly due to the essential
difficulties brought by the non-compactness of the whole space.

@ [S] : the existence and uniqueness of solutions of stochastic
reaction-diffusion equations (SRDEs) on R under the Lipschitz
conditions of the coefficients

e [MP] and [MPS] : pathwise uniqueness for stochastic
reaction-diffusion equations on R with Holder continuous coefficients.
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Introduction

o SPDEs with locally Lipschitz coefficients that have polynomial growth
and/or satisfy certain monotonicity conditions. The typical example
of such a coefficient is b(u) = —u*, which has the effect of “pulling
the solution back toward the origin."

o [DKZ](AOP,2019) : global well-posedness of SRDEs on finite
intervals, the coefficients are locally Lipschitz and of
(|z| log | z|)-growth. Unfortunately, the methods are not valid for
SRDEs on R because typically ||u(t)||occ = Supyer |u(t,x)| = oo .
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Introduction

@ Our results: global well-posedness when the drift b is locally
Log-Lipschitz and |b(z)| = O(|z| log |2]).
@ We are forced to work on Ciem(R) with a specially designed norm

sup (Ju(t, x)|e ).
t<T,xeR

e Establish some new, precise (lower order) moment estimates of
stochastic convolution on R and hence obtain some a priori estimates
of the solution.

@ Pathwise uniqueness: we are not able to apply the usual localization
procedure as in the literature. We provide a new type of Gronwall's
inequalities, which is of independent interest.
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Statement of the main results

Definition of solutions 1

A random field solution to equation (2.1) is a jointly measurable and
adapted space-time process u := {u(t, x) : (t,x) € Ry x R} such that for
every (t,x) € Ry xR,

(i, 59) =Baflg) 2+ /0 ‘ /R o s, v Al
+/Ot/Rpt_sa(u(s,y)) Wds,dy), P—as,  (3.1)

(=)
where pi(x, y) = \/21?5‘9_ 2, and {P¢} >0 is the corresponding heat

semigroup on R.

mild solution <> weak solution, in the sense of PDEs
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Ctem Space

Crem = {fe C(R) : sup |{x)|e M < oo for any A > 0} ,
x€R

endow it with the metric: for any f, g € Ciem,

o0

d(f.g) == Z % min {l,igﬂg |f(x) — g(x)]e}w|x|} )

n=1
o fy = fin Crem iff supyeg |fa(x) — A(x)|e X — 0 as n — oo for any

A>0,
@ (Ciem, d) is a Polish space.
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Hypotheses

Set log, (u) := log (1 V u).
(H1) b is continuous, and there exist two nonnegative constants ¢; and ¢
such that for any u € R,

|b(u)| < ciful log, |u] + c2. (32)

(H2) There exist nonnegative constants cs3, ¢4, ¢s, such that for any
uveR,

1
|b(u) — b(v)| <c3|lu— v|log, =
+ calog (|u] V |V])|u— V| + cs|u— V. (3.3)

Note that condition (H2) implies condition (H1).
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The function x — xlog |x| satisfies (H2). For any x,y € R,

|xlog [x| — ylog |y|| <|x — y|log
Ix —y]

+ [log - (Ix V [y]) + 1 + log 2]|x — y/. (3.4)

v
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Main results

Here are the main results.

Theorem 4

Assume uy € Ceem and that (H1) is satisfied. If o is bounded and
continuous, then there exists a weak ( in the probabilistic sense) solution

to the stochastic reaction-diffusion equation (2.1) with sample paths a.s.
in C(R+, Ctem)-
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Main results

Assume uy € Ceem and that (H2) is satisfied. If o is bounded and Lipchitz,
then the pathwise uniqueness holds for solutions of (2.1) in C(Ry, Ctem)-
Hence there exists a unique strong solution to (2.1) in (R4, Cem)-
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Preliminaries

Set log, (r) := log(rV 1).

Lemma 6

Let X, a, c1, co be nonnegative functions on Ry, M an increasing function
with M(0) > 1. Moreover, suppose that c1, c; be integrable on finite time
intervals. Assume that for any t > 0,

X(t) + a(t) < M(t) + /Ot ci1(s)X(s)ds + /Otcz(s)X(s) log, X(s)ds, (4.1)

and the above integral is finite. Then for any t > 0,

X(1) + a(8) < MO exp (exp(Cu(0) [ " cu(s) exp(— Gals)) ds).
(4.2)

where Co(t) := [y c2(s)dsds.
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Preliminaries

Lemma 7

Let Y(t) be a nonnegative function on R. Let c; and c, be non-negative,
increasing functions on Ry. Let e € [0,1) be a constant and

a3 Ry x (g,1) — Ry be a function that is increasing with respect the
first variable. Suppose that for any 6 € (g,1), the following integral
inequality holds

Vo) < cl(t)/ot Y(s)ds-l—cz(t)/ot Y(s) Iog+%ds
+c3(t, 0) /Ot Y(s)?ds, Vt>0. (4.3)

v
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Preliminaries

If for any t > 0,

limsup (1 — 0)c3(t,0) < oo, (4.4)
0—1—

then Y(t) = 0 for any t > 0. In particular, if c3(t,0) < C(t) and cis an
increasing function with respect to t, then (4.4) holds.
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Preliminaries

Sketch of the proof. Fix any T > 0 we will show that Y(-) =0 on [0, T].
Let

57— limsup(L—0)cs(T.0), T = min{l e}. (4.5)

9—1— 307" 3c(T)
We first prove Y(t) =0 for t € [0, T" A T]. Since
1 1
sup (xlogJr ) =-, (4.6)
x>0 €
we have
(t) [F a0y a1-6 1
Y(t) <a T g ./0 Y(s)" Y(s)" " log,. V(o7 ds

+os(t,0) /0 V()" ds
Scl(t)/ot (s)ds—i—[ (1()0)—|—C3(t 9)] /Ot Y(s)Pds.  (47)
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Preliminaries

For t € [0, T], let

O(t) = T)/ Y(s) ds+{ (1(_779) + o TH]/ Y(s) (4.8)
Then Y(t) < ®(t) for any t € [0, T]. Thus,
00 =+ [ 205+ amo) v
came+ [ 20 s amo|ew’. @)
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Preliminaries

Hence,

= (20 ) < a-name’ + [0+ qman -],
(4.10)

Solving the above inequality, we obtain

oy~ < [AD oo [ @
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Preliminaries

Hence

1

Y(t) <&(t) < {[Q(?ﬁ +(1—0)cs(T, 9)7*] e(l—e)Cl(T)T*}l—G

1
-0

<ea(NT {CZ(?TK +(1- 9)C3(T,9)Tk} : (4.12)

for any t € [0, T*]. Letting @ — 1 and in view of the definition of T*,

Y(1)=0, Vtelo, T. (4.13)
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Preliminaries

The following estimates of the heat kernel p:(x,y) hold.
(i) Forany x,ye R, 0 €0,1],0<s<t,

O+ _ |0
|Pe(%, y) = ps(x, y)| < Msw (Ps(x,¥) + pe(x ¥) + pae(x,¥))-

(4.14)
(i) Forany x,y€ R and t >0,

/R\pt(xy 2) = pi(y, 2)|dz < \/g x ‘X\;Ey‘. (4.15)

(iii) For any x,y € R and n,t > 0,

‘pt(Xa Z) _ pt(y’ z)’eﬁ'zl dz S 2\/5 X M X e772t X eﬂ(lxl+|x_y|).
Shang!RZhang (USTC)
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Preliminaries

(iv) Forany x,y € R and n,t > 0,

/R 1pe(x, 2) — pely, 2)| "7 2| dz

V2|x -yl
ST

+ zenzt(znmn@) en<lxl+lx—yl>} (4.17)

(v) Forany x,y€ Rand 0 < s<t,

x |erfex b+ e )

S
/0/R|pt_r(x,z)—ps_,(y,z)|2drdz

V2-1
S~/

It— sz + (4.18)

v

VJX e

Shang, Zhang (USTC) SPDE on R 21/46



Moment estimates of stochastic convolutions

I

Let h: Ry — R, be an increasing function. Let

{o(s,y) : (s,y) € Ry x [0,1]} be a random field such that the following
stochastic convolution with respect to space time white noise is well
defined. Let T be a stopping time. Then for any p > 10 and T > 0, there

exists a constant C, p1), 7 > 0 such that
P
E sup efh(t)lxl
(t,x)€[0, TAT]XR

TAT
<ConnTE / / o (£, )|Pe PO dxdt, (5.1)
0 R

/Ot/Rpf_s(x,y)a(s,y) W(ds, dy)

In particular, if o is bounded and h is a positive constant, then the left
hand side of (5.1) is finite.

v
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We employ the factorization method. Choose « such that
2% <a< % — %. This is possible because p > 10. Let

(Jao)(s,y) : = /0 ) /O (5= ey, 2o (r, 2)W(dr, d2), (5.2)

sinTo

(1At x) : = /0 t /0 N(t— 99 gy (x5 Y)dsdy. (5.3

™

Stochastic Fubini theorem = for any (t, x) € Ry x [0,1],

/0 t /0 1 Pe—s(x, y)o (s, y) W(ds, dy) = J*71(J0)(t, x). (5.4)

Based on the above identity, using BGD inequalities and Holder inequality
etc we can prove (5.1).
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Proposition 10

Let h: Ry —— R, be an increasing function. Let

{o(s,y): (s,y) € Ry x [0,1]} be a random field such that the following
stochastic convolution with respect to the space time white noise is well
defined. Let T be a stopping time. Then for any e, T > 0, and 0 < p < 10,

there exists a constant C, , y1), T Such that

t
E sup { / / pe—s(x, y)o(s,y) W(ds,dy)
(t,x)€[0, TAT]XR 0 JR

<eE sup (|a(t, X)|e*h(t)|xl)p
(t,x)€[0, TAT]XR

TAT
+Q@MUTE/ /wdﬁﬁffmdeMt
0 R

P
emmn}

(5.5)
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Proof. The crucial step is to prove the following tail estimate.

e_h(qu > p>

Claim: For any p, T > 0 and g > 10,

t
P ( sup [ / / Pt—s(Xa y)O'(S, y) W(dS, dy)
(t,x)€[0, TAT] xR LIJO JR

TAT
<P < / / o (s, )| e M dyds > pq)
0 R

C TAT
= %T)’TE min {p",/ / o (s, y)|? e~ 9RO dyds} : (5.6)
0 R

v
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A priori estimate of solutions

For A,k > 0, set

B(\, k) :=max {);,4/1}, (5.7)
INOYDE 25(1 ™ {1+|og <45(;2’ %) log ﬁ(;l;”)ﬂ , (5.8)
X = [ s p)ou(s. ) s, dy). (5.9)

It is easy to see that for any k > 0, T*(\, k) — o0 as A — 0.

Assume that (H1) is satisfied and o is bounded. Let u be a solution of
(2.1). Then for any A > 0 and T < T*(\, c1), there exists a constant
Ch,c,, T such that the following a priori estimate holds for P-a.s.,
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sup (Ju(t, x)[e M)
t<T,xeR

5 -l
<G, 7x1+20T+4e 2 sup (|ug(x)|e
x€R

A2 28T-1
e4c1 Te4B

2 sup (Ve Re) } C (5.10)

(t,x)€[0, T] xR

where we write 3 instead of B(\, ¢1) for simplicity, and the constant ¢ is
same as that in condition (H1).

Remark 12

Lemma 11 actually implies that the solutions of (2.1) don't blow up in the
space Ciem, since we can take sufficiently small A > 0 such that T*(\, c1)
can be larger than any given number.

| \
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A brief sketch of the proof. Set

UT = sup  (Ju(tx)eMe)
(t,x)€[0, T] xR

From (3.1), we have

UT) < sup  (|Peo(x)|e™M) + sup (|t x)|e)
t<T,xeR t< T,xeR

/ot/Rpt—s(X’ y)b(u(s, y)) dsdy

+ sup { e_’\|x|em}. (5.11)

t<T,xeR

The difficulty lies in dealing with the superlinear drift. We have
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/ot /R pe—s(x, y)b(u(s, y)) dsdy

_Alxeft
sup { e xle }
t<T,x€R

t B 5
S sup {/ / pe—s(x, y) (c1|u(s, y)|log, |u(s, y)| + c2) dsdy x e Alxe }
t<TxeR (Jo Jr

t
<coT+c sup {/ sup [(|u(s7 y)|e e’ ) x log., (|u(57 y)|e e’ )}
t<T,xeR 0 yeR

X / Pe—s(x, Y)e’\MeBS dyds x e‘“em}
R

t
va sip { [Csup (luts.le
t<TxcR LJO yeR

X / Pe—s(X, y)eMy‘e‘Bs)\\y|e‘ﬁS dyds x e_’\|X|eﬁt} =T+ I1+11
R
(5.12)

—/\\y\e55>
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Note that the function x — xlog, x is increasing on [0, 00), so we have

[<c1 sup {/ot sup [(\u(r,y)]e_)‘V'eBr) x log,, (|u(r,y)|e_>“}’\eﬁr)}

t<T,xeR YeERr<s

Xz(tfs)ezﬁs Bs _ Bt
X 2e 2 M Xe” qs x e AXle

A2(t_5)6255 t
<2c¢y sup { sup (e 2 > / U(s) log, U(s) ds}
0

t<T \ s<t
2 ory T
§2c1e27362‘”1/ U(s) log,, U(s) ds, (5.13)
0

where we have used the fact that

)\Q(tfs)ezgs )\72 28t—1
max e 2z  =e¥® . (5.14)
se€[0,1]

Shang, Zhang (USTC) SPDE on R 30/ 46



For the term /I, we estimate as follows

t
I1<c; sup {/ sup <|U(S7y)‘e_)‘|y|eﬂs)
0

t<T,xeR YeR

W(t=s)ehe 5 J :
X <e 2 e\ x| + C,\ﬂ,te)‘lxleﬁs ds x e e’

s 1 A2(t—5)e?Ps
<c1 sup { sup (\u(s,y)\e*)‘b"eﬁ) X Bsup (e 2 )

t<T,xeR \ s<t,yeR s<t
td 5
/ _ St
x [ S dsx el
o ds

t
+a sup{CA,,B,r/O sup (Ju(r, y)|eMe") dS}

t<T r<s,yeR

2 - T
<%e‘%e2“ ‘U + CA,CLT/ U(s) ds, (5.15)
0

Shang, Zhang (USTC) SPDE on R 31/46



a %6257—1 < 1 < - i { <46 ﬁ)]
e _2<:>T_T*()\,c1)—2ﬁ 1+ log A2I0g2
(5.16)
Hence for T < T*(\, 1),
1 T
H<SUT) +aCosr / U(s) ds. (5.17)
0

Combining (5.11) - (5.13) and (5.17) together, = T < T*(\, 1),

22T _ “lx
UT) <267 sup (Juo(n)le ) + sup ([
yeR t< T,xeR

2 _ T
+oT+ 2c1e27*62m ' / U(s) log, U(s)ds
0

1 T
+ UM+ G / U(s) ds. (5.18)
0

applying the log Gronwall inequality, (5.10) is deduced.
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Existence of weak solutions

Let ¢: nonnegative smooth function, suppy C (—1,1) and

Jr o(x)dx = 1. Let {np}n>1: cut-off functions, 0 < 7, < 1, np(x) =1 if
|x| < n, and 1,(x) = 0 if x| > n+ 2. Define

ba() = n | B»e(n(x= 1)) dy x o). (61)
700 = [ o= 1)) dy % (). (62)
Consider the approximating SPDEs:
un(t, x) =Prup(x) + /Ot/Rpt_s(x, ¥)bn(un(s,y)) dsdy

+/Ot/RPtsUn(un(svy)) W(ds, dy). (6.3)
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Existence of weak solutions

It is known that there exists a unique solution u, to the above equation.

Moreover, the sample paths of u,, are a.s. in C(Ry, Cem). The following
result is a uniform bound for the solutions u,.

Lemma 13

Assume uy € Ciem and (H1). Suppose that o is bounded and continuous.
Then for any p > 1 and A\, T > 0, we have

sup]El sup <|un(t,x)|e_)‘|x|>p < 00. (6.4)

n>1 t<T,xeR

v
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Existence of weak solutions

Define

Xo(t,x) = /Ot/Rpt,(x,z)b,,(u,,(r,z))drdz, n>1.  (65)

Vi(t, %) = /0 t /R pe_son(un(s, y)) W(ds, dy) (6.6)

To get the tightness of the approximating solutions {u,} we need to prove
the following result.
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Existence of weak solutions

Lemma 14

Let uyp € Ctem. Assume that (H1) holds and that o is continuous with

Ko = sup,cg |0(2)| < co. Then for any \, T>0, p>1 and 6 € (0,1),
there exist constants Cy ¢, 1, K. T.,p.0,us and Ck, T independent of n such
that

E (IXn(t%) = Xals, 1P M) <Crcy i, Tpto (1= 51 + Ix= 117)
(6.7)
E (|Va(t, ) — Va(s, )P M) <Ci, mp (16— sl5 + Ix—1iF) . (6.8)

for any s, t € [0, T] and x,y € R with |x — y| < 1. In particular, the family
{un} is tight in (R4, Ciem)-
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Existence of weak solutions

Since {up} is tight in (R4, Ctem). By Prokhorov’s theorem and
Skorokhod'’s representation theorem, we may assume that d(u,, u) — 0
(not relabelled) a.s. in C(Ry, Ctem) for some process u on some
probability space (§~2,.7T“, ]?’) in other words, for any A >0, T >0,

sup (Jun(t;x) = u(t, )] M) 0, P-as. (6.9)
t<T,xeR

It follows that for any (t,x) € Ry x R,

//pt (%, 2)bn(un rz)drdz—>/ /pt A(x, 2)b(u(r, 2)) drdz,

/ /pt_,(x z)on(un(r,z)) W(dr,d2) —>/ /pt H(x, z)o(u(r, 2)) W(dr,dz),
(6.10)

as n — oo. Therefore, we see that v is a weak solution of (2.1).
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Pathwise uniquness

Suppose that u, v are two solutions of equation (2.1), u,v e C(Ry, Crem)-
Fix T > 0, and take A > O sufficiently small so that T < T*(\, cs). In this
section, we write 3 for B(\, cs) for simplicity. Let M >0 and 0 < § < e?

Trm i=inf {t > 0:sup (|U(t7 X)|ei/\‘x‘em) z M}

xER
Ainf {t >0 :sup (|v(t, x)\efMX'eBt) > M} )
xER
9 —inf {t > 0:sup (|u(t, x) — v(t,X)\e_MX'eﬂt) > 5} )
xeR

=t AT AT,

with the convention that inf ) = +o0.

2n=E sup (Ju(t;x) = v(t,x)]e ).
t<raTd xeR

(7.1)
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Z(r)
<E  sup { / t [ Pt Dlbtuts ) — b(us )] dsily

t<r/\7—,f/,,X€R
_ Bt
X e Alx|€ }

LE sup {\ /0 | peslx o (uls:9) = (s, 9)]

t<r/\7-,‘\5/,,XER
_ Bt
Alx|e }

=1+ J (7.2)

W(ds, dy)
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<2 s {f [ Pt Desluls. )~ A

t< r/\T;\s/l,XGR

< log. 1o dsdy x e—Axeﬁf}

5,y) = vs,Y)|

+E  sup { / "‘ | P y)cstog, (1u(s )|V s )

t<raTd xeR

x |u(s, y) — (s, y)| dsdy x e—Axeﬂf}
t
R {/ /pt’s(x’y)c5|“(57)’)* v(s, y)| dsdy
tSrAT/‘\s/l,xeR 0 JR

_ixleft
o o Ae }

=h+h+k (7.3)
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<.

22 o1 [T 1
<2c3e%3 e / Z(s)log, —— ds,
0

Z(s)

h<...
1 r
<520+ G [ Z(9)ds
0

Similarly,

2 _ r
I < 2c5e2736w 1/ Z(s) ds.
0
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J<eB s (Io(u(s )~ o(ds, e M)

sgr/\rﬁ/l,yER

5
c.am [T _ —Ave® 44
+ ConprE | Rya(u(s,y)) o(v(s,y))le yds,

Hence for any 0 < 6 < 1, we have

I’/\T,f/, _)\‘ | Bs 0
J<el,Z(r) + Ce,Aﬁ’,IE/ sup { <|a(u(s, y)) —o(v(s,y))|le e )
0

yeR

< [ lotuls.) = olds. )~ - ay as
R

2K 1- GLH C.
<el,7() + N / Z(s)" ds. (7.7)

Shang, Zhang (USTC) SPDE on R 42 /46



Combining (7.2)-(7.7) together, we obtain that
1 r
20) < (3 + ela) 200+ Cumenens [ 2945

22 2pr— r 1 2K 1— GL Ce
+2C3e4)1\,8e2ﬂ 1/0 2(s) |°g+z(s)ds+( AB,r /Z 0 ds.

(7.8)

Taking for example € = 4L , and then applying the special Gronwall-type
inequality established in Lemma 7, we obtain

Z(r)=0, Vr>0. (7.9)

This further implies that 79 > T, P-a.s., otherwise it contradicts the
definition of 79. By the arbitrariness of T, we obtain that for P-a.s.,

u(t,x) = v(t,x), V(t,x)eRy xR, (7.10)
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